A Diffie-Hellman Key Exchange Using Matrices Over Non Commutative Rings

نویسنده

  • Mohammad Eftekhari
چکیده

We consider a key exchange procedure whose security is based on the difficulty of computing discrete logarithms in a group, and where exponentiation is hidden by a conjugation. We give a platform-dependent cryptanalysis of this protocol. Finally, to take full advantage of this procedure, we propose a group of matrices over a noncommutative ring as platform group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Public Key Cryptosystems Using Polynomials over Non-commutative Rings

In this paper, we propose a new method for designing public key cryptosystems based on general non-commutative rings. The key idea of our proposal is that for a given non-commutative ring, we can define polynomials and take them as the underlying work structure. By doing so, it is easy to implement Diffie-Helman-like key exchange protocol. And consequently, ElGamal-like cryptosystems can be der...

متن کامل

Diffie-Hellman type key exchange protocols based on isogenies

‎In this paper‎, ‎we propose some Diffie-Hellman type key exchange protocols using isogenies of elliptic curves‎. ‎The first method which uses the endomorphism ring of an ordinary elliptic curve $ E $‎, ‎is a straightforward generalization of elliptic curve Diffie-Hellman key exchange‎. ‎The method uses commutativity of the endomorphism ring $ End(E) $‎. ‎Then using dual isogenies‎, ‎we propose...

متن کامل

Public Key Exchange Using Matrices Over Group Rings

We offer a public key exchange protocol in the spirit of Diffie-Hellman, but weuse (small) matrices over a group ring of a (small) symmetric group as the platform. This“nested structure” of the platform makes computation very efficient for legitimate parties.We discuss security of this scheme by addressing the Decision Diffie-Hellman (DDH) andComputational Diffie-Hellman (CDH) p...

متن کامل

Public key exchange using extensions by endomorphisms and matrices over a Galois field

In this paper, we describe a public key exchange protocol based on an extension of a semigroup by automorphisms (more generally, by endomorphisms). One of its special cases is the standard DiffieHellman protocol, which is based on a cyclic group. However, when our protocol is used with a non-commutative (semi)group, it acquires several useful features that make it compare favorably to the Diffi...

متن کامل

Public Key Exchange Using Semidirect Product of (Semi)Groups

In this paper, we describe a brand new key exchange protocol based on a semidirect product of (semi)groups (more specifically, on extension of a (semi)group by automorphisms), and then focus on practical instances of this general idea. Our protocol can be based on any group, in particular on any non-commutative group. One of its special cases is the standard Diffie-Hellman protocol, which is ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1209.6144  شماره 

صفحات  -

تاریخ انتشار 2012